
Problem 1: Multiple barriers
For the following system, use Matlab to:
1. Calculate the coefficients A’ of 𝜓𝜓 after two finite barriers via transfer matrix 

approach

2. Calculate transmission probability (𝑇𝑇 = |𝐴𝐴′|2

|𝐴𝐴|2 ) in case of E>V

Choose E = 4 eV, V = 2 eV, a = 0.1 nm, b = 0.3 nm
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Problem 1: Multiple barriers

• Penetration-though-barriers problem can be found in many quantum 
mechanics textbooks. Here I attached the second chapter from Atkin’s book 
Molecular Quantum Mechanics (I think the book is very clear). Section 2.10
is directly relevant to it.

• The transfer matrices can be derived, or you can refer to the scanned pages 
of Gilmore’s book Elementary Quantum Mechanics in One Dimension (I’ve 
highlighted the most useful parts, in page 13~17)

• There’re four breakpoints between region 0 to 4, and thus four matrix 
transformations in this system. Pay attention to the last transformation, 
where the coefficient B’ is set to be 0

• Coefficient A could be set as 1 during numerical calculation, as transmission 
probability is only a ratio.



Problem 2: Inelastic tunneling—electronic coupling
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Inelastic: energy loss
o This model involves coupling 

between two electronic states
o Coupling term: V12
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Schrödinger Equation:

where:

H Eψ ψ=

For the following system, use Matlab to calculate transmission probability (𝑇𝑇 = |𝐶𝐶|2

|𝐴𝐴|2) of 𝜓𝜓1 by 

solving a system of linear equations of variables A, B, C, B’ and C’

Choose E = 4 eV, V
1

= 1 eV, V
2

= 3 eV, W = 6
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About the Schrödinger Equation: 
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Coupling term comes in



Boundary Conditions:
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From Schrödinger Equations:
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Hint: Above we’ve derived four linear equations of five variables (A, B, C, 

B’, C’). Set A=1, then the rest of the variables can be solved via Matlab. 

Thus the transmission probability would be readily obtained by:
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Problem 3: Inelastic tunneling—electron-nuclear coupling

Differences from problem 2:
o Energy is lost via electron-oscillator vibronic interaction

i.e., it involves both electronic and vibrational degrees 
of freedom

o Wavefunctions 𝜓𝜓 are bound states, rather than plane 
waves Dα Aα

1. Develop a Matlab script (may involve if-else construct) to evaluate the matrix elements 
of �𝐻𝐻 ⁄𝑒𝑒 𝑛𝑛, i.e. 〈𝑛𝑛| 𝑎𝑎† + 𝑎𝑎 〉|𝑞𝑞 , when 𝑛𝑛, 𝑞𝑞 ∈ 0,4 , and express them in a matrix form.

2. Choose T = 300 K, 𝑡𝑡𝐷𝐷𝐷𝐷 = 𝑡𝑡𝐷𝐷𝐴𝐴 = 0.2 eV,ℏ𝜔𝜔𝐷𝐷 = 0.1 eV, 𝛼𝛼𝐷𝐷 − 𝛼𝛼𝐷𝐷 = 1 eV(𝛼𝛼𝐴𝐴 and 𝛼𝛼𝐷𝐷 are 
related by E

i
= E

f
), plot 𝑘𝑘𝐸𝐸𝐸𝐸 vs  𝛾𝛾𝐷𝐷 in the range 𝛾𝛾𝐷𝐷=0~0.3 eV for both elastic tunneling 

(n=q=0) and inelastic tunneling (n=0, q=1)
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where:

Model Hamiltonian:

Initial and final energy (should be equal)

Reference: J. Phys. Chem. B 2004, 108, 15511-15518

Harmonic Oscillator 
Hamiltonian

Electronic-vibronic
interaction

ϕD, A: Wavefunction of electronic part
n, q:  Quantum number of harmonic oscillator (vibronic part)

γ
U
: coupling strength



Bridge’s Green’s function:
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Transmission matrix elements are:
• Elastic tunneling (n=q)

• Inelastic tunneling (n≠q)
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Reference: J. Phys. Chem. B 2004, 108, 15511-15518



About 〈𝑛𝑛| 𝑎𝑎† + 𝑎𝑎 〉|𝑞𝑞 :

• These notations are adapted from quantum harmonic oscillator system
• { 〉|𝑛𝑛 } are the orthonormal eigenstates of the Hamiltonian of harmonic 

oscillator �𝐻𝐻𝑛𝑛 = 𝑎𝑎†𝑎𝑎 + 1
2 ℏ𝜔𝜔𝐷𝐷,  with quantum number n (n=0, 1, …)

• 𝑎𝑎†,𝑎𝑎 are called "creation" and "annihilation" operators, with the following 
relationship:

• Because { 〉|𝑛𝑛 } are orthonormal, so

• More detailed description can be found in 
http://en.wikipedia.org/wiki/Quantum_harmonic_oscillator , under “ladder 
operator method” section

𝑎𝑎† 〉|𝑛𝑛 = 𝑛𝑛 + 1 〉|𝑛𝑛 + 1 , 𝑎𝑎 〉|𝑛𝑛 = 𝑛𝑛 〉|𝑛𝑛 − 1
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