Problem 1: Multiple barriers

For the following system, use Matlab to:

1. Calculate the coefficients A^{\prime} of ψ after two finite barriers via transfer matrix approach
2. Calculate transmission probability $\left(T=\frac{|A \prime|^{2}}{|A|^{2}}\right)$ in case of $E>V$

Choose $E=4 \mathrm{eV}, V=2 \mathrm{eV}, a=0.1 \mathrm{~nm}, b=0.3 \mathrm{~nm}$

Problem 1: Multiple barriers

- Penetration-though-barriers problem can be found in many quantum mechanics textbooks. Here I attached the second chapter from Atkin's book Molecular Quantum Mechanics (I think the book is very clear). Section 2.10 is directly relevant to it.
- The transfer matrices can be derived, or you can refer to the scanned pages of Gilmore's book Elementary Quantum Mechanics in One Dimension (I've highlighted the most useful parts, in page 13~17)
- There're four breakpoints between region 0 to 4 , and thus four matrix transformations in this system. Pay attention to the last transformation, where the coefficient B^{\prime} is set to be 0
- Coefficient A could be set as 1 during numerical calculation, as transmission probability is only a ratio.

Problem 2: Inelastic tunneling-electronic coupling

For the following system, use Matlab to calculate transmission probability $\left(T=\frac{|C|^{2}}{|A|^{2}}\right)$ of ψ_{1} by solving a system of linear equations of variables A, B, C, B^{\prime} and C^{\prime}
Choose $E=4 \mathrm{eV}, V_{1}=1 \mathrm{eV}, V_{2}=3 \mathrm{eV}, W=6$

$\psi_{1}=\left\{\begin{array}{ll}A e^{i k_{1} x}+B e^{-i k_{1} x}, & x<0 \\ C e^{i k_{1} x}, & x>0\end{array}, \quad \psi_{2}=\left\{\begin{array}{l}B^{\prime} e^{-i k_{2} x}, x<0 \\ C^{\prime} e^{i k_{2} x}, x>0\end{array}\right.\right.$

Inelastic: energy loss

- This model involves coupling between two electronic states
- Coupling term: V_{12}

Schrödinger Equation: $H \psi=E \psi$
where: $\psi=\binom{\psi_{1}}{\psi_{2}}, H=\left(\begin{array}{ll}H_{11} & H_{12} \\ H_{21} & H_{22}\end{array}\right)$

$$
H_{i i}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V_{i}, i=1,2
$$

$$
H_{12}=H_{21}=V_{12}=W \delta(x)
$$

About the Schrödinger Equation:

$$
\begin{aligned}
& \left(\begin{array}{cc}
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V_{1} & W \delta(x) \\
W \delta(x) & -\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V_{2}
\end{array}\right)\binom{\psi_{1}}{\psi_{2}}=\left(\begin{array}{cc}
E_{1} & 0 \\
0 & E_{2}
\end{array}\right)\binom{\psi_{1}}{\psi_{2}} \\
& \Rightarrow-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{1}(x)}{d x^{2}}+V_{1} \psi_{1}(x)+W \delta(x) \psi_{2}(x)=E_{1} \psi_{1}(x) \\
& \lim _{\varepsilon \rightarrow 0} \int_{-\varepsilon}^{\varepsilon}\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{1}}{d x^{2}}+\left(V_{1}-E_{1}\right) \psi_{1}(x)+W \delta(x) \psi_{2}(x)\right] d x \\
& =\lim _{\varepsilon \rightarrow 0}\left[-\left.\frac{\hbar^{2}}{2 m} \frac{d \psi_{1}}{d x}\right|_{-\varepsilon} ^{\varepsilon}+2 \varepsilon\left(V_{1}-E_{1}\right)_{1} \psi_{1}(0)+W \psi_{2}(0)\right] \\
& =-\frac{\hbar^{2}}{2 m}\left(\left.\frac{d \psi_{1}^{I I}}{d x}\right|_{x=0}-\left.\frac{d \psi_{1}^{I}}{d x}\right|_{x=0}\right)+W \psi_{2}(0)=0
\end{aligned}
$$

Boundary Conditions:

$$
\begin{align*}
& \psi_{1}^{I}(0)=\psi_{1}^{I I}(0) \Rightarrow A+B=C \tag{1}\\
& \psi_{2}^{I}(0)=\psi_{2}^{I I}(0) \Rightarrow B^{\prime}=C^{\prime} \tag{2}
\end{align*}
$$

From Schrödinger Equations:

$$
\begin{align*}
& -\frac{\hbar^{2}}{2 m}\left[\left.\frac{d \psi_{1}^{I I}}{d x}\right|_{x=0}-\left.\frac{d \psi_{1}^{I}}{d x}\right|_{x=0}\right]+W \psi_{2}(0)=0 \tag{3}\\
& -\frac{\hbar^{2}}{2 m}\left[\left.\frac{d \psi_{2}^{I I}}{d x}\right|_{x=0}-\left.\frac{d \psi_{2}^{I}}{d x}\right|_{x=0}\right]+W \psi_{1}(0)=0 \tag{4}
\end{align*}
$$

Hint: Above we've derived four linear equations of five variables (A, B, C, $\left.B^{\prime}, C^{\prime}\right)$. Set $A=1$, then the rest of the variables can be solved via Matlab.

Thus the transmission probability would be readily obtained by: $T=\frac{|C|^{2}}{|A|^{2}}$

Problem 3: Inelastic tunneling-electron-nuclear coupling

1. Develop a Matlab script (may involve if-else construct) to evaluate the matrix elements of $\widehat{H}^{e / n}$, i.e. $\langle n|\left(a^{\dagger}+a\right)|q\rangle$, when $n, q \in[0,4]$, and express them in a matrix form.
2. Choose $T=300 \mathrm{~K}, t_{D U}=t_{U A}=0.2 \mathrm{eV}, \hbar \omega_{U}=0.1 \mathrm{eV}, \alpha_{U}-\alpha_{D}=1 \mathrm{eV}\left(\alpha_{A}\right.$ and α_{D} are related by $E_{i}=E_{f}$), plot $k_{E T}$ vs γ_{U} in the range $\gamma_{U}=0^{\sim} 0.3 \mathrm{eV}$ for both elastic tunneling ($\mathrm{n}=\mathrm{q}=0$) and inelastic tunneling ($\mathrm{n}=0, \mathrm{q}=1$)

Differences from problem 2:

- Energy is lost via electron-oscillator vibronic interaction i.e., it involves both electronic and vibrational degrees of freedom
- Wavefunctions ψ are bound states, rather than plane waves

Initial states and final states:

Model Hamiltonian:

$$
\hat{H}^{\text {bridge }}=\hat{H}_{\text {site }}^{e}+\hat{H}^{n}+\hat{H}^{e / n}
$$

$$
\text { where: } \hat{H}_{\text {site }}^{e}=\alpha_{U}\left|\varphi_{U}\right\rangle\left\langle\varphi_{U}\right|
$$

$$
\underset{\substack{\text { Harmonic Oscillator } \\ \text { Hamiltonian }} \hat{H}^{n}=\left(a^{\dagger} a+\frac{1}{2}\right) \hbar \omega_{U} .}{ }
$$

Electronic-vibronic interaction

$$
\hat{H}^{e n}=\gamma_{U}\left(a^{\dagger}+a\right)\left|\varphi_{U}\right\rangle\left\langle\varphi_{U}\right|
$$

$$
|i\rangle=\left|\varphi_{D} ; n\right\rangle,|f\rangle=\left|\varphi_{A} ; q\right\rangle
$$

$\varphi_{\mathrm{D}, \mathrm{A}}$: Wavefunction of electronic part
n, q : Quantum number of harmonic oscillator (vibronic part) Initial and final energy (should be equal)

$$
\begin{aligned}
& E_{i}=\alpha_{D}+(n+1 / 2) \hbar \omega_{U}=E_{\text {tun }} \\
& E_{f}=\alpha_{A}+(q+1 / 2) \hbar \omega_{U} \\
& E_{i}=E_{f}
\end{aligned}
$$

Bridge's Green's function: $\hat{G}^{\text {bridge }}=\hat{G}_{0}^{\text {bridge }}+\hat{G}_{0}^{\text {bridge }} \hat{H}^{\text {e/n }} \hat{G}_{0}^{\text {bridge }}$

$$
\text { where } \hat{G}_{0}^{\text {bridge }}\left(E_{\text {tun }}\right)=\frac{1}{E_{\text {tun }}-\hat{H}^{\text {bridge }}}=\sum_{m} \frac{\left|\varphi_{U} ; m\right\rangle\left\langle\varphi_{U} ; m\right|}{\alpha_{D}-\alpha_{U}}
$$

Transmission matrix elements are:

- Elastic tunneling ($n=q$)

$$
T_{D A}^{n n}=\left\langle\varphi_{D} ; n\right| \hat{G}_{0}^{\text {bridge }}\left|\varphi_{A} ; n\right\rangle=\frac{t_{D U} t_{U A}}{\alpha_{D}-\alpha_{U}}, \quad \text { where } t_{i j}=\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle
$$

- Inelastic tunneling $(n \neq q)$

$$
\begin{aligned}
T_{D A}^{n q} & =\left\langle\varphi_{D} ; n\right| \hat{G}_{0}^{\text {bridge }} \hat{H}^{e / n} \hat{G}_{0}^{\text {bridge }}\left|\varphi_{A} ; q\right\rangle \\
& =\frac{t_{D U} t_{U A} \gamma_{U}}{\left(\alpha_{D}-\alpha_{U}\right)\left(\alpha_{A}-\alpha_{U}\right)}\langle n| a^{\dagger}+a|q\rangle
\end{aligned}
$$

Electron transfer rate:

$$
k_{E T}=\frac{2 \pi}{\hbar}\left|T_{D A}^{i f}\right|^{2} \frac{1}{\sqrt{4 \pi \lambda k_{B} T}} \exp \left(-\frac{\lambda^{2}}{4 \pi \lambda k_{B} T}\right) \text {, where } \lambda=\gamma_{U}^{2} / \hbar \omega_{U}
$$

About $\langle n|\left(a^{\dagger}+a\right)|q\rangle$:

- These notations are adapted from quantum harmonic oscillator system
- $\{|n\rangle\}$ are the orthonormal eigenstates of the Hamiltonian of harmonic oscillator $\widehat{H}^{n}=\left(a^{\dagger} a+\frac{1}{2}\right) \hbar \omega_{U}$, with quantum number $n(n=0,1, \ldots)$
- a^{\dagger}, a are called "creation" and "annihilation" operators, with the following relationship:

$$
a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle, \quad a|n\rangle=\sqrt{n}|n-1\rangle
$$

- Because $\{|n\rangle\}$ are orthonormal, so

$$
\begin{aligned}
& \langle n| a^{\dagger}|m\rangle=\sqrt{m+1}\langle n \mid m+1\rangle=\sqrt{m+1} \delta_{n, m+1} \\
& \langle n| a|m\rangle=\sqrt{m}\langle n \mid m-1\rangle=\sqrt{m} \delta_{n, m-1}
\end{aligned}
$$

- More detailed description can be found in
http://en.wikipedia.org/wiki/Quantum harmonic oscillator, under "ladder operator method" section

